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ABSTRACT

It is shown that simple eigenvalues of an m-th order
ordinary differential equation are approximated within
I xl2K
0([A") Dby collocation at Gauss points with piecewise {
\ i

olynomial functions of degree <« mtk on a mesh A . The
poly

same rate is achieved by certain averages in case the cigen-
value is not simple. The argument relies on an extension
and simplification of Osborn's recent results concerning
the approximation of eigenvalues of compact linear map:s.
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Significance and Explanation

Collocation at Gauss points has become a popular method for
the solution of boundary value problems for ordinary differential
equat ions, both linear and nonlinear. 1t is therefore natural to
consider the method for the solution of the corresponding eigen-
value problem. But, theory and numerical experiments reported in
the literature left open the question of just how well eigenvalues
wonld be approximated by this method. That is, proven convergence
rates were much lower than one would hope for or could demonstrate

in careful numerical experiments. The present report settles

these questions by proving optimal convergence rates for the method.

t

I'he argument required a reworking and strengthening of the existing

theory for the approximation of eigenvalues of compact linear maps.
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COLLOCATION APPROXIMATION 70 EIGENVALUES
OF AN ORDINARY DIFFERENTIAL EQUATTON:
THE PRINCIPLE OF THE THING
Carl de Boor and Blair Swartz

0. Introduction. The eigenvalue problem we consider is of the form

(1) (Mx) (t) = \(Nx)(t) for t ¢ [O0,1], Bix =0, i = 1,....m ,

C(m) [0,1] is being sought and

where (\,Xx) ¢ @ x
m . i
(Mx) (t) := (D x)(t) + ) a (t)(Dx)(t)
Y i<m l
(Nx) (t) := § b, (t)(DIx) (t)
i<m *

with (Bi)n; a sequence of linear functionals on C(mﬁl)

[o,1].

We approximate this problem by collocation, as follows. We choose a (strict) parti-

e IR AP Nttt S DR

tion A\ := - [0,.%]) ;

and, based on it, a sequence i));Q of collocation points, k to each interval

= (t +t + p,At i
(rr ‘iAr)/z

Tkr+i )

5 ; 3 i . B e
with (p,) a fixed sequence of points in the "standard" interval [-1 ,1 ]. Then, we

11

m (m-1) : ;
see 3 & o= > B satls
seek \A ¢ and xA ¢ n‘k+m,A I Kb A n C [0,1] satisfying

(1‘\) (Mx‘\)(ri) = \‘\(Nx/\)(li), 1= Xoues ’ IS L [ S

Here, IPr \ consists of all functions on [0,1] which, on each interval [t
0 d

coincide with some polynomial of order r , or, of degree
In this paper, we bound the difference between the eigenclement (1,x) and its

), as a function of the maximum mesh |.\|: ; nmxi.\ti,

. ; k -
the ascent of \ , and the choice of the collocation pattern (.‘i)i « In particular,

collocation approximation (\ T
i ‘

we show, in Theorem 3.1, that

e

(4) Ay = A (‘(IAI“)

. k "

in case )\ has ascent 1 and (“i)l are the Gauss-Legendre points. We also show

that it is not possible to obtai. this result as an application of Osborn's [11]) general
theory. Further, we show that (4) holds also when )\ has ascent greater than 1

provided \,\ is replaced by an average of certain nearby approximate eigenvalues. We
i

I DU E R [P T e

v
also obtain (’('.\|‘k) approximations to breakpoint values of the eigenvector x

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
United States Department of Energy under Contract No. W=7405-Eng. 36.
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Here is an outline of the paper. In Section 1, we identify collocation as a par-

ticular projection method applied to the eigenvalue problem

My = y
for a certain compact linear map T on an appropriate Banach space. In Section 2, we
apply Osborn's nice results to this projection method, indicate that one cannot obtain
(4) in that way, but defer a proof of this claim to Section 4. We then modify Osborn's
analysis appropriately in order to relate, in Theorem 2.2, the error X-AA to numbers
of the form

*
((T-TANA,«J %

*
with wA an approximate (generalized) eigenvector and ¢ a (generalized) eigenvector

of the adjoint problem. In Section 3, these numbers are shown to be 0(|A|2k) for
collocation at Gauss points, which leads to (4). Section 3 also contains a short dis-
cussion of related results.

We have deferred discussion of numerical examples to a companion paper [3]. We
found only one real example of an ordinary differential equation with an eigenvalue
of ascent greater than one in the literature. Yet, existing theory (and the theory
developed in the present paper) give convergence results which strongly depend on the
ascent. The three examples we give do show that the proven convergence rates cannot
be improved. We also offer an explanation of sorts for the curious way in which approx-
imate eigenvalues have, in some examples, been observed to converge to an eigenvalue
of ascent greater than one.

In the process of writing the present paper, we have reexamined the at times
convoluted arguments in de Boor and Swartz [2] for the superconvergence of Gauss point
collocation approximations at knots. This has led us to a whole family of projectors
onto n>$+k,A' of which interpolation at the Gauss collocation points is only one
example, which all lead to 0([A|2k) approximations at knots and therefore give
O(IAle) approximations to simple eigenvalues. We discuss these ideas in [4], where
we also give an alternative proof of Theorem 3.1 which makes no reference to the

arguments in [2].




1. _Translation to an abstract setup. We would like to discuss collocation in

the setting of Osborn [11], Vainikko [12) et al., i.e., as a problem of approximating

A
the eilgenelements of a compact map T on some Banach space Y , and therefore assume
that 0 1is not an eigenvalue of (0.1) and that the coefficients of M are continuous
(later, we will assume them to be quite smooth). Then M-l exists as an integral
operator on Y := L _[(0,1],
=1 1
(4 °) (M y)(t) = [T G(t,s) y(s) ds ,
0
with G Green's function for the problem
J (Mx) (t) = y(t) for ¢t ¢ [0,1], ﬁix w0, TR L.l

Further, (\,x) 1is an eigenelement of (0.1) if and only if (1/\,Mx) is an eigen-

element of the campact linear map

(2) T e N M

on Y ., [0,11. Note that T 1is given as an integral operator with a piecewise

cont inuous kernel T,
m-1 :
(3) Te,s) == § b (8) (3/38)'GlE,s) ,
i=0
therefore compact as a map from I, into C . 1In fact, T maps I _ - bounded sets

-

to unitormly Lipschitz continuous sets.
such a change transforms (().1\) into the problem of finding (\, ,yv ) « T~V

such that

Y.\(‘i) : \.\(T\'.\)(Ii)' » T (ARSI

with

(4) V. o= (M2 : 2 ¢ " g.z = 0 i=1 m)
A : H ¢ m’k,.\ v i ' RN fe

We convert this into an ordinary eigenvalue problem involving same operator 7T on Y

by introducing the linear projector PA which carries C\[O,U (:= \‘Ho,'ll X

x Cft ‘-l't 1) into \'\ by associating with each vy « C\[O,l] the unique element

i‘.\\_ \"\ for which
Pyt = ylr,)e 1= 1,000kl
A i i
Then the two conditions: f . \'\ and f(x.l) = q(li) y 1= 1,...,kt, are equivalent to
the one condition: f = f‘\&]- The approximate eigenvalue problem (0.1 \‘ is therefore

equivalent to the problem of finding (\‘\,y‘\) « © x Y such that

™
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(5) P \ATAYA
with
(o) T‘,\ 1= PAT .

Of course, it is not clear a priori that PA is even defined. But note that, by
definition, PAY is the unique element in VA' i.e., of the form MxA with XA ¢ Ft'm'f
and Six} =0, i=1,...,m, which agrees with y at the xi‘s. According to

Theorem 3.1 of de Boor and Swartz [2], there exists a positive const depending on M
| (and p) so that, for all partitions A with
A = max, At, < const
l l §9%4 = =020y
and all y « 0\10,1], the collocation equation

‘ (MXA)((i) = y(\i), Eom Qo okl By ™0y 2w Yol

i A
E . m 3
has exactly one solution, x\ , 1in Pk+m A (To be precise, de Boor and Swartz (2]
! y
assume additionally that (x\i)1 is linearly independent over n}‘ , but this assumption

was shown to be superfluous by Wittenbrink (16]. Also, both papers only consider real
valued functions, but the extension to complex valued functions is trivial. Wittenbrink's
formulation would also appear to be appropriate for problems in which the ﬁi also depend

on \.) This insures that P\ is defined for all A with |A| sufficiently small,

L

and allows us to conclude from [2] that P\ converges to the identity pointwise on C[l0,1].

: m . P ¢ m
In fact,; if (ﬁi)1 is linearly independent over Pm = ker D° , then P

~1

m -3 m -1 3 ; i ; m y
(b'M ) p(OM ), with P the linear projector taking Dmx to D x\ and shown in (2]

to be bounded on C[0,1) independently of A ; hence P\ is then bounded on C[0,1] inde-

pendently of A . In the more general case, an argument like Wittenbrink's (see [lu;

rroof of Theorem 2)) shows that

- m -1
(7 e - P\)yﬂm < const (1 - Q\)D Nyl
for some const independent of A and with Q\ interpolation fraom Wk N at the colloca-
tion points (:.)k\.
g
In conclusion, not only is ?\ defined for all small |A]| , but, since T maps 1. |
campactly into ¢ , we have T\ = P\T defined and uniformly convergent to T as )




2. A general result. In this section, we recall Osborn's results and then
rephrase his arguments to obtain a simple yet useful formulation of the error in eigen-
value approximations by projection (and other) methods. This formulation makes it evident
(as Osborn's or Vainikko's does not) why eigenvalue approximations by collocation are of
such high order.

We recall from Osborn [11l] (or from a standard reference such as Kato [8]) that,
associated with each nonzero eigenvalue yu of a compact linear map T on the Banach
space Y 1is the invariant subspace
(1) S := ker (y - M,

i.e., the kernel or nullspace of the linear map (u - T)a, where o , the ascent or rank

of u , is the smallest integer for which ker(y - T)a = ker(u - T)a+1. S is finite
dimensional, say

a := dim S =: algebraic multiplicity of y ,
while the geometric multiplicity of u is the number g := dim ker(p - T). The elements

of ker(u - T)\{0} are the eigenvectors of T , while those of S\ker{y - T) are called

root vectors or generalized eigenvectors. S is the range of the linear projector E

given, e.g., by the formula

.
27i

1

(2) E := f (z - T) ~dz ;
T

with T any circle in the complement of the spectrumof T and enclosing in its interior

u , but no other eigenvalue of T . The linear projector E can also be written in the
form

a *
(3) Ey = ) (yw; de,.,

i=1 o

*
with (wi)i any basis for S and (wi)i the corresponding dual basis in
® ¥ o
S := ker(p - T )¥,
* * * *

i.e., wi €S ,all i, and (wi,¢j = 6ij » ail 4,j. Here, T is the (Banach)-

*
adjoint or dual of T , i.e., the linear map on the topological dual Y of Y which is

characterized by

* * * * *
Ty, v» ={y, Ty), all ve¥, vy €Y ,

* *
and ( , ) denotes the natural pairing between Y and Y . In particular, S is the

; ; * . i
invariant subspace of T  corresponding to u and has also dimension a

-K=

e . . ik




In terms of tHhis notation, Osborn [11) establishes (among others) the following facts.

Theorem 2.1 (Osborn) Let ('1‘\) be a sequence of compact linear maps on the Banach
TRTEraRNST S TITIITE SR - ) ———— R —~ ——— e —— e -~ ————

space Y converging uniformly to the linear map T , and let 1 be a (nonzerc) eigen-

\bg_l__u__v_g_f T . Then, for all large v,

() B W ewem | (z - T ) “dz
\ - 1 \
is defined; 1ts range, :I\. » has dimension a and satisfies
(5) gap(S, 8§ ) < const /(T - T )i_“
g - vwis
with
dis J 15 X 1 \
(6) gap(u,V) := max ( sup gixelx, ) . sup Gist e U) Vs
Il 3 Il
Xecl X\ J
Further, if i is one of the eigenvalues of T enclosed by I, then
~ QY LR ‘\‘ " * "
(7) [i=u < const (Il (=T )| HH(T =1 )| «ll + G AT=D Y@, @, 2] ) .
\ e \ (S \ ' \
O S v [S i 3=1 S N
However, the average
B (‘..1 L R ;d) ‘a
f comprised of the a eigenvalues of '1‘\‘ (counting algebraic multiplicities) enclosed by
I'y admits the closer estimate
| |-y . ® N *\‘ r S
x (8) [u=u! < const {I(T=T )| MI(T =1 ) | off + (o= ), .0, 2|} .
; Pl s v IS v 8 g S G
| =

This is a powerful theorem, and Osborn makes good use of it in a variety of applica-

tions described at the end of his paper, mostly to Galerkin approximations. But the

theorem does not suffice to explain the high accuracy of eigenvalue approximations obtained

by collocation. The chief difficulty lies in the fact that, in collocation (as translated,

» -
in the preceding section, into this abstract setup), T does not approximate 7T
W

sufficiently well, see Section 4.

» . s . s - ]
We obtain more direct control by camparing matrix representations for 'Hq and

g ¢ A8 is done, in effect, in Osborn [11] to get the estimates (7)) and (8), and is
9

done, quite explicitly, in Atkinson [1] and in Kreiss [9]; but we do it a little bit

§
vl

differently.

: . : : Qa
Let J be the matrix representation of 7T & with respect to the hasis Wi‘l for
§ . Since gap(8,5) * 0, E|_ is 1-1 for all large v , and then there is a cor-
\ o
i b
responding basis (¢, ) for 8§ with
l:v 1 v

-6=




(9) E ¢ = ¢ , i= 1,..-,6

N it
. L] *
Since, by (3). ;i = ¢jE , we see that
< * ) ( . ) ( . ) \
p . ¥ = (Ey, 9. = P .1V = e
»lp\),v] vl'\)’v] Vl'wj \l]
*
hence vy = “i (y,¢i) ;i “ for all y e Sv , thus the matrix representation Jv for
: § a S
TV‘SV with respect to (v‘i'\‘)1 has (i,j)-entry
) ( =)
J lae = CT @ g . i 43) e
v'ij \‘V]'\.lvl ' 1,]) = lt ' a

But the entries of J are given by a similar expression. We have

* * * *
(3),. =(Tv, 0. ) =(TEBp, ,¢.) =(ETv, ,¢.? =(Tv. ,v. ) ,
3 T e D X Jav L 51 E L

3 (00 T (EEORE (s
using the fact that T commutes with its spectral projector E . Consequently,

*
) - ' - .
(10) It Jv" < const, , max [¢ (T Tv)wj,v'\oi I

1,)]

We gather these facts into a theorem .

Theorem 2.2. With the assumptions and notations of Theorem 2.1, let J be the

matrix representation of T|, with respect to some basis (v"i)1 of s . Then, T |
— Cpase S,
1s similar to a matrix &y close to J in the sense that
M ( ® . .
(it) (J - Jv)ij =((T - Tv)vj,v'wi ) LS Yol = a8
*
: ; ; : a :
with (¢, )l the basis for S for which Eg¢, =¢, , all j , and (¢.) the basis
e jov 1 U=, Jev j —— = e
g e a a
for 8§ dual to (¢,) (and to (¢, ).).
—- —_— 171 i,v'1

It follows that the eigenvalues of T“ close to u are those of the matrix Jv
(including algebraic multiplicity and structure) and, since J has u as an eigenvalue
in just the same way as T does (including algebraic multiplicity and structure), the
approximation properties of the process can be read off from standard perturbation argu-
ments which compare the eigenvalues of a matrix J with those of a perturbation JV ’
e.g., from wWilkinson [13], in the manner practiced by Atkinson {1] and Kreiss (9]

In particular,

L/t
(12) llx—uil < const Il - J I i

for any of the a eigenvalues by of Jv , while




(13) v - (trace Jv)/al = |traceils - J) |/a < copst g - gl

and also

(14) [1/u - (trace J;l)/a] < const [IJ - JvH

In fact, with ul,...,pa the eigenvalues of Jv counting algebraic multiplicities, and

PIERRTLA the clementary symmetric functions in a variables, we see, by comparing co-

efficients of the characteristic polynomials of J and Jv , that

(15 : oL = S = . )
(15) wj(ul, iy oj(u, w) + 0dlg Jv“) anin

Finally, with g the geometric multiplicity of . , there exists an eigenvalue My of

J (and T ) so that
v v

(16) b=+ 0UT - Jvﬂq/a)

e T PR 18

This is a better rate than (12) except when all Jordan blocks of J have the same size.
The estimate (16) appears in Wilkinson (13, p. 81], while (13), (14) and (15) are
obvious. The proof of (12) (via Gershgorin's circle theorem) is left to the reader in

Wilkinson (13, p. 80-81). Atkinson [1] gives, so he says, a shorter proof. We record

our own version, for the record.

Since (p -N% =0 P

a (T PR BT =
| u uil < Iy Jv) = (u Jv) (p=3) 7l f-conStHJHAh%H”J Jv”
using the fact that the map A b a% s locally Lipschitz continuous. (Indeed,
a=1 ; ; a=1 : .
A" -8%= T A" @a-myed , nence 12% - BY <t T nal® I Ysidiuacsl.) This
j=0 j=0

proves (12), given that Jv *>F

Note that we recover (7)-(8) of Osborn's theorem directly from (12)-(13) because

of (10) and since

e ———————————CEETTEE T R T

=1 *
- J 5 L -
# (J v)ij (T Tv)(ElS ) 509y )
(17) b
( -1 . & (¢ e
B RS e LB e, T
while
=] -

(18) 1E[g ) 0=l <11 - Ehaise((g]g) Y, ran £)

v v

< - E“congtH(T-Tv)lSM|¢ll,




the last by (5) and because H(Els )_l¢ﬂ
v

1~

constli¢ll for all sufficiently large v . Here

"

-1
(1-E) (E g ) "¢, and that E is a linear pro-
N
jector onto S , hence | (1-E)v|| < I1-Elldist(v,S) while, for v ¢ § , dist (v,S)

\

-1
we have used the facts that (E’S )] e~y
\i

gap(s,s )vll .
It remains, for any particular approximation sequence (Tv), to estimate g - J I,

i.e., to estimate expressions of the form

=5 *
(19) ((T=-T )(E|. ) "oe ) ,
v S
* * v
withy ¢ S, ¢ €8S . The estimate
(20) I =3l < constli(r - )| I
N = eee— 0 S

is, of course, immediate from (17) and (18) and provides, in conjunction with (12)-(1€),
first assurance that the eigenvalues of T are, indeed, approximated well by those of Tv'

it also makes the important point that the error in the eigenvalue approximation achieved
by a particular discretization method is at least of the same order as the error in the

corresponding discrete solution of the corresponding nonsingular equation. But, this estimate
. X s : : 1
ignores the fact that the linear functional ¢ is being applied to a residual error, i.e.,
to an element of the form (T - Tv)y, a fact that, at times, leads to sharper estimates.
For example, assume that TV is obtained from T by projection, i.e., T\ = P T for some
) v
projector P . Then, as in (17) and (18),
v

- *
[((T-Tv)(E g ! Lo )|
\Y)
(21)

- * *
|((Ei ) 1¢—w,¢ (1-p )T ) + ((1-P))Tv,¢ (1-P )|
Sv v Y v

* *
<umﬁIH1¢)'HMhP) «lellle
= Vv'ls A
; 2 . : e ;
(using the facts that (1-Pv) = (I-PV) and that TS S_S). This provides an indication
of the potential "double accuracy" in the eigenvalue approximation by such methods, as
first proved by Vainikko [12], and also established in this generalityv by Osborn [11].
* *

In the analysis of Galerkin's method, or the least-squares method, ¢ « & is given

by integration,

* *
(£, ) = [o (s)E(s)as |
g * * |
for some smooth function ¢ , while ranfx,, i.e., the interpolation conditions for th

Lie

projector Pv = P\ , consists of integration against certain piecewise smooth functions. |




Explicitly, then

*

* * S
dist(y , ran P,) = inf sup ]f v (s)f(s)ds - f ) Y.K, (3)f(s)ds| /I £l
A Y £ q 3+ X

with span (Ki) akin to BH< A in approximation power. This allows the conclusion that
¥ k
N -p) foall = oClal™
. . : k
for those methods which, together with the more obvious fact that Il (1 - PA)|S” = O(IA’ )

gives the sought-for “"double accuracy" for such methods.
. * *
For collocation, though, dist(¢ , ran PA) fails to go to zero with any kind of rapid-
ity since now
. * * * “
dist(¢ , ran P,) = inf sup | o (s)E(s)ds - ) y.f(li)l/“f" '
* ! £ iy
Lu@ep Lan PA consists of linear combinations of certain point evaluations. Therefore,
; : . k . ;
the simple bound (21) only implies O(IAl ) convergence for Gauss point collocation. Even
: i k+m :
Osborn's more careful bound (8) only implies 0(|A| m) convergence for Gauss point collo-
cation, with m the difference between the order m of M and the order N (see Section
4.)
Because of this, we proved Theorem 2.2 which relates to error in the eicenvalue
approximation to the value of a smooth linear functional on the residual error in a collo-

2 : y ; 2k ; :
cation approximation. For, such expressions can be shown to be O(IAI ), as is done in

the next section.

=10-




3. Application to Collocation at ﬁaugg pointg, For collocation, as described in

.
the intioductory sections 0 and 1 , the quantities ¢ ('l’-'l‘\‘h.‘j \|,»'i ) in the crucial
‘
bound (2.10) take the form
] *
(1) [P e (&) (T=T )¢, . (t)dt ,
0 i & ")

and we now intend to show these to be (‘(l.’\lzk) if the collocation points are chosen
¢ : : kK »

as Gauss points, i.e., if (;‘i)1 consists of the Kk zeros of the Legendre polynomial
of degree Kk . The analysis of collocation at Gauss points in de Boor and Swarts (2]
was based on the observation that

1 * 2k
(2) [T e (t) (=1 )y (t)at = oclal<™

0 i

in case ¢ and ¢y are both smooth. But, since (1) involves rather than a f{ixed

~‘
.4

w‘ , we have to make more explicit just how (2) depends on ¢ and, because of our desiie

to keep our estimates mesh independent , i.e., dependent only on the number l\l . the

argument is a bit delicate.

We continue to use the notation and terms of the preceding section, but replace the

subsoript  "v" by the move appropriate subscript  “A".  Also, we use the abbreviat ions
el oy 2 sup [e(t) |
t <tct
1 X vel
danda
:i i
el Yool ell 4
s, (r) ! .
( =0 (r)

k
Further, we assume that (,\i\, has been chosen so that
i

K
(3) _fl plty ((-.‘i)dt 0 for all p ¢« ®

] i1 .

Finally, we assume that the coefficients of M and N  are smooth enough. Specifically,
we assume that
(,(mk)

(4) R, B, J
i i

(0,1}, all i .

Then, using the abbreviation

Y b r- N\
' e g8 ¢ 6 Mo 0% %8 st cone., DYE ¢ 2Y
with X any of the spaces “'I‘ (0,11, 1 <p<w® or C[0,1], the map M carvies
) : -4 41) .
,\‘(‘ into N(' o , and N maps x(' . into x(’ y for ¥ < n+k. In particular,

any invariant subspace of T belonging to a nonzero cigenvalue consists of functions in




»
x(n#k)' and the same holds for T , the adjoint of T . This insures that

C(n#k)’ S‘ Z C(n) ;

(5)
and implies, with (1.7), that
(6) TR oc]al®
tn particular, [IJ - J,l= O(IAlk). by (2.20), and (2.12) now gives the results of
R. Winther [14] for collocation.

We also conclude from (6) and (2.18) that
(7) e ) rempll = 0C[a|M el for v s .

\
Lemma 3.1. There is a constant const depending only on k and p so that

r+l * e n+k+l, *
lf ¢ (1-T,)¢,| < comst |at | el gyl (T=T e

-
&

nt+k, (r)

Proof. The function ('I‘-'I‘A)\oA vanishes at the k collocation points Cgal’ "

Ukek P [tr'tr+1] and, by assumption (3), the polynomial 1 (t - prk+s) is ortho-

S

gonal to nn‘ on | [E.t ]. The argument in de Boor and Swartz [2], in the proof of

r’ r+l

*
Theorem 4.1 (with ¢ playing the role of G(t,:)) therefore establishes the inequality,

s P o n) (n+k)
assuming, of course, that ¢ « éﬂ‘[tr'tr+1] and (T—TA) WA ¢ L [tr'tr+1]' |H
. p e -1 .
Next , consider “(T-TA)¢A“n+k,(r) with ¢A¢ ¢j,A = (B SA) 'j . We would like
to bound this number in terms of wj A and its derivatives on (tr'tr+1)' and this scems
’
difficult since TAf at a point depends, offhand, on f on all of [(0,1]1. But,
a
T2 = J . Vi s?,
N Z W) 44%,a
i=1
*
since J = ((TA¢j,A'¢i )) represents 'rA SA with respect to (¢i'A). Therefore, with
-1 m ¢
8 = M ¢ g =L yeas "
(8) xi,A ¥y mm+k,A i=1, ,a

we have

) T ’ = ¥ = J s 2V s
( A)wl,A TwJ,A z ( A)lj'l,A
= - o J ). . Mx, P
Nx:l,A ); ¢ A)nMxl,‘\

and J\ » J. This shows the derivatives of (T - TA).:j to be expressible in terms

' A

of the derivatives of the coefficient functions of M and N (it is only here that we

. m
use the full power of our assumption (4)) and those of x. ¢ P , and, as
1,A k+m, A




JA *J (by (2.20)), it follows that
( - < st |
tH BT = Ty Mok, (v S SonsE, o m?” Uy Ve, ()

To camplete the analysis, it remains to bound "xi,A"m+k,(r) appropriately.

- =) -
Lemma 3.2. For ¢ ¢ § and x := M l¢ . let X, = M L and v, : (E]. ) I;
‘ - l\
Then, for s=0,...,m+k ,
s S k
) < D + const At

(10) D%l .y < D%l ) + cons x(IAI/I D

Proof. By () , ly,~ell_ = 0(|a]"), hence
(11) IIDs(xA -x)ll_ = O(IAIR) for 8=0,...,m,
which proves a stronger inequality than (10) for s=0,...,m. For s > m , one now
proceeds as in the proof of Lemma 4.1 in de Boor and Swartz [2] (with the role of x

and Rx played here by x and x, , respectively) to show, using (11), that

A
oS I . const_(|a|/|at P for s=
D (x - xA) by cons x( Al/ Atr ) or s=mtl,...,mtk ,
; (m+n) -1 "
in case x ¢ IL [tr'tr+1]' But, by (4), x =M ¢ has even mtkén continuous

derivatives. |”

Theorem 3.1. Let T be the compact linear map on nélo'll given by (1.2), with

M and N given by (0.2) and satisfying (4), and let u be a nonzero eigenvalue of 1

with corresponding invariant subspace S . Let TA be the collocation approximation

(1.6) to T , and assume that the collocation points (pi) satisfy (3)

For all small |A|, TA has_an_invariant subspace S\ and_a matrix representation

JA of TA SA for which

ha - JA“ < const iA[n+k

with J an_appropriate matrix representation for T/

o

+
Proof. By Theorem 2.2, we only need to show that the integrals in (2) are O(IAIH k)

under our assumptions. But, by Lemmas 3.1 and 3.2 and (5),

t
X » E r+l * L
I({ v (T Tij,/\l % ZI{ v (T 'rA)wj'AI

r

) ntk+l, * S

£ Z const |at_| LU e S L

i ntkel * 3 |
< Z const |at_| ey m?x(ﬂxiﬂm+k'(r) + (lalza )™
< const [a®™ . |

-13-




For completeness, we summarize previous results concerning the approximation of

eigenvalue problems (0.1) by collocation. Winther [14) was the first to publish results

: d t m+1 3
for the collocation of (0.1) using Pk*m . + He proved that (the quantity he called
o

"algebraic multiplicity" we have called "ascent")

‘k,'u

Ix = 2 1= ola ¥ a1 = the ascent of )\ ;

" k . i
o™ u = olal™, i<m if a=1l .,
In one of his numerical experiments, he collocated at the k Gauss points even though

his theory no longer applied. But this experiment demonstrated that same sort of

"superconvergence” might be going on for the approximate eigenvalues, although its

2 . : . . m
character could not be estimated. 1In his thesis [15], Winther proved that, usinj n-k‘m .
, O

‘ instead,

11 =1 ] (,(' ,(kqmin(n,ri\))/q
| A . Ll |

o

) a = ascent of )

ot - u i = orfajkminiem, oy :

Y, § < mem ;

ot (u - “\)“.v 0('.\|k+min(n,m—i)

), mem < i < m-l ;

these last assuming that o 1. Extensive numerical work reported there also indicated
that some sort of superconvergence was taking place for the approximate eigenvalues when
Gauss points were used in the collocation., Lathrop (10] presented some more numerical
evidence of superconvergence, for two second order operators; but still the character

of the superconvergence could not be estimated. Cerutti and Parter [6] contemplated

o
collocating the self-adjoint second order eigenvalue problem (D u) (x) = \a“(x) u(x)
Lo ]
with Kk Gauss points using Wk# y A Convergence rates were not relevant to that
-8

paper; what is worth noting is their proof that the approximate eigenvalues of the non-
self-adjoint matrix problem were, in fact, real.

In their monograph [7] concerned primarily with collocation using piecewise poly-
nomials, Douglas and Dupont steered clear of straightforward collocation for the eigen=-

value problem. However, they did use Bramble and Osborn's precursor (5] to Osborn's
e

basic paper [(11] to prove that for the second order problem Mu = \u and using l‘;u, A’
2,1

one can collocate the orthogonal projection of the right-hand side onto ll‘k A at the
ol

Gauss points to obtain (they suppose that the ascent of \ is one)




[P ————————

[ - xAl - O(lalz"):
ha = ull o= oclal®?,

maxlDi(u - u,) (xj)l = 0(|A]2k), e
]

From the start,our numerical experiments indicated quite clearly that straight-

torward collocation of (0.1) at the Gauss points using Pkﬂl\ A
’

should yield (at least,

when the ascent of )\ is one)
2k
A - \AI = oAl
maxlDi(u - uA)(xj)l - 0(|A|2k), i<m;

]

i.e., about the best one could hope for fram the known results for the boundary value

problem [2]. It was these experiments, of course, that prompted us to develop this

paper which completes Winther's work.




1. _In collocation, the adjoint problem is not approximated all that well. In ti.

section, we elaborate on our earlier contention that Osborn's bound (2.8)
2k ,
is not strong enough to give the desired k‘(l.\f ) bound for the eigenvalue ervor in
Gaussspoint collocation.  The difficulty lies with the term
- L]
(T - ’l‘\) ol

k » -

which, 50 we claim, cannot be shown to be 0([.\' ) merely because S is a finite

dimensional linear space of smooth function{al)s.

* "
We begin with a simple bound on (T -~ 'I‘\) ' .+ which has, in fact, nothing to do
AT S

L]

with § but merely relies on the obvious fact that
) " <o | < et -2t = 1
(1 ) = !‘.\ !S' < [T - ’1.\ = |lT - T.\ -

For this, let m be the difference between the order m of M and the order of N

Lemma 4.1, Under the assumptions of Theorem 3.1,

(2) I -0 = 0t]af™) .

Proof. For f ¢ L, , we compute with (1.3) that

(r-rof = [ Q- p)TE, 9 () ds.
{ o { )
further, by (1.3) and Hecause of the smoothness assumption (3.4), T(.,s) « n,‘f‘“" [0,1)

uniformly in s , i.e.,

Hl‘mT".:i)" . const N for 0 < s S

s ¥

Consequently, from (1.7),

N

{1 - !‘\) T(',s)"m < lAlm const

M,N

and (M) tollows.  On cambining (2) and (1), we then obtain

. » N
(1) h(r -7 )‘,.n = 0¢Ja™ ,
A iS

which allows the conclusion from (2.8) that

k’
'H!l)'

- = ()
(4 ha = a0 = ocfal

a result alveady in Winther [15].




Next, we show that (3) is sharp in the sense that we cannot obtain a rate better

m, . ,
than ((]a]™) if all we know about S is that it is spanned by finit many smooth

- - S : , ym=1 .
function(al)s. For this, we exhibit a simple M, N, (?l\o o and a very smooth ¢
for which

* * L ] m
(T - 7,)¢ Il = const |al

*
We take ¢ =1, i.e.,

. 1
v £= [ f(t)ar, all £ L,
0
Then
* * * *
tr -tov it = [Pt [P - p) Tee,s) £(s)ds dt
A A
0 0
= fl [ fl (1 - PA)7(t,s)]dt f(s)ds,
& 0
! and, consequently,
* * * 1
(4) e =Toe I =10 [7 e(t,-)at I
A 2 2
with

e('.S) = (1 bar. PA)T(°15) .

N

m m-m " Sl
Next, we choose M =D , N =0D and any appropriate (bi)l independent over

mm . Then, for some appropriate Py ¢ Wh ' §

m-1
T(t,s) = Nt[(E-5)+ /(m=-1)1! - ps(t)]
-1 A
- (e-s)f /=1t = g_(¢)

for some appropriate B Pﬁ . Also, PA is then just o

; : kQ . :
trom mk \ at the collocation points (1.1)1 . Therefore, with the assumption that
0l

A i.e., interpolation

k>m,
e(+,s) = (1 - QA)Tb("S)
where
To(',s) 1= (o = S)T-l/(ﬁ-l)! .

Further, ef(+,s)

(1 - Q«)Tb(-,s) vanishes on every interval (ti'tiOI‘ which does

not contain s in its interior. Thus

t,
fl e(t,s)dt = f i+l e(t,s)dt

0 ti

«ll=

e —— S ——




with 1 chosen so that [ti‘t‘¢]] contains s On this interval, we change variables,
.

using
t = g.(r) := (£ % ¢, + At 2
x( ( 1 i+l T & i)/
Then we can write
L, At
3 +1 1 i
! . e(t,s)dt - [ (1 - Q)T (o, (1),s) .,1 dr,
t ;‘ 2 [ ¢ 2
5

with Q polynomial interpolation to functions of 1 at the points N S e &

v A11

K‘k
g . -1
in (-1,1)., Since also, with o := o, (8)
At m-1 o
7, (1) ,8) = [—= -0 -1)!

Tolo, (1) ,s) = ( > ) (1 ), /m-1)1,
we therefore find that

1 Ati m 1
(5) £ e(t,s)dr = | 3 ) /m=1)! « F(a), o = %G (s), ti S8 < ti+l s

where F is the function on ([-1,1] given by

Flo) := [* (1 - Q) (r - ™1 4

Note that HFll ) >0 since, e.g., Qe = U)T-l

® 0 for g > pk » hence, then
| 1 e WA
F(o) = f (1 ‘U)T : dtr = (1 - a)m/m >0 for ok L g <1 .
~1

Now combine (4) and (5) to get that

[ el !“ (-1 .
* . 3 2 2m+1
1« 00 1" - | izo (at, /2)

For a uniform partition A =

(iIA}); » therefore ,

(0)

e
S

e

» L N 5 = m
T - 1)e il = i3 Y

(m=1)12
which proves our claim.

«18=




''IIll!IIll!F-''""""""‘"‘"l""'.'''''''''»''‘"''-''''''''''''''''''''''''"'''''''"-"""""""""'*'w

T p———————

6.

11,

REFERENCES

K. Atkinson, Convergence rates for approximate eigenvalues of compact

operators, SIAM J. Numer. Anal. 12 (1975) 213-221.

integral

C. de Boor and B. Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal.

10 (1973) 582-606.

C. de Boor and B. Swartz, Collocation approximation to eigenvalues of an

ardinary differential equation: Numerical illustrations,

C. de Boor and B. Swartz, Piecewise polynamial projection methods tor an ODE

which give high-order convergence at knots,

J. H. Bramble and J. E. Osborn, Rate of convergence estimates for

eigenvalue approximations, Math. Camp. 27 (1973) 525-549.

nonselfadjoint

John H. Cerutti and S. V. Parter, Collocation methods for parabolic partial

ditterential equations in one space dimension, Numer. Math. 26 (1976)

227-254.

J. Douglas, Jr. and T. Dupont, Collocation methods for parabolic equations in a

single space variable, Lecture Notes in Mathematics

New York, 1974,

T. Kato, Perturbation theory for linear operators

g

. Vol. 385, Springer-Verlag,

Springer=Verlaqg,

1900,

H.-0. Kreiss, Difference approximations for boundary and eigenvalue probloms

for ordinary differential equations, Math. Camp.

James F. Lathrop, Using B-=splines to solve the one-dimensional

(1976) , submitted to J. Camput. Physics.

Jo

(1972)  00h-024d.

John E. Osborn, Spectral approximation for campact operators, Math.

(1975) 712-725.

S\'hl'\.;d nger

camp.

cquat ion,

)

G. M. Vainikko, Rapidity of convergence of approximation methods in the eigenvalue

problem, Zh.Vychisl. Mat. i Fiz. 7 (1967) 977-987

Phys. 7 (1967) 18-32.

U888 R Campuat .

Math.

and Math.




: i J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.

14. R. Winther, A collocation method for eigenvalue problems, BIT 14 (1974) 96-105.
15, R. Winther, En kollokasjonsmetode for egenverdiproblemer
l6. K. A. Wittenbrink, High order projection methods of moment- and collocation type

for nonlinear boundary value problems, Computing 11 (1973) 255-274.

CcdB/BS:db




|
|
|

/ / Wi
/ / : Y L :
18. SUPPLEMENTARY NOTES A ————— A e e F 4 L
U. S. Army Research Office United States Department of Energy
P.O. Box 12211 washington, D.C. 20545
Research Triangle Park
L _North Carolina 277Q9
19. KEY WORDS (Continue on reverae side il necessary and identify by block number)
Eigenvalues Piecewise polynamial
Compact linear map Superconvergence
Ordinary differential equation
Collocation

SECURITY CLASSIFICATION OF THIS PAGE (Whea Data Entered)

READ INSTRUCTIONS
REPORT MU“ENTAT‘ON PAGE BEFORE COMPLETING FORM
" REPORT NUMBER 2. GOVY ACCESSION NO.[ 3 RECIPIENT'S CATALOG NUMBER
1937
4. TITLE (and Subtitle) = 5. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific

_COLLOCATION APPROXIMATION TO_EIGENVALUES OF AN reporting period

_ORDINARY DIFFERENTIAL _EQUATION: THE PRINCIPLE {5 5ERromminG ORG. REPGRT NUMGER

/ OF THE THING . S S
7. AUTHOR(s) /.-l. CONTRACT OR GRANT NUMBER(s)

| / = ' DAAG29-75-C ;0024 ’
I | carl de Boor s Blalr[Swartz £ — 3,

e \ i1-74¢5-Fng = 36

9. PERFORMING ORGANIZATION NAME AND ADDRESS Wm TASK
Mathematics Research Center, University of
610 Walnut Street Wisconsin

7 - Numerical Analysis
Madison, Wisconsin 53706

11, CONTROLLING OFFICE NAME AND ADDRESS %JEMLL__
|\ Marctwmas7o!

See Item 18 below z%asa-omcts

14, MONITORING AGENCY NAME & ADDR!Si:{' lb?_mmom:-) 1S. SECURITY CLASS. (of thie report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

(N//Vll\L W77 |

'7. DISTRIBUTION STATEMENT (of m‘-ooc: tered in Block 20, it ditterent lroql Repart)

20. ABSTRACT (Continue on reverse side If necesaary and identify by block number)

It is shown that simple eigenvalues of an m-th order ordinary differential
equation are approximated within 0(|A|2 ) by collocation at Gauss points with
piecewise polynamial functions of degree < mtk on a mesh A. The same rate is
achieved by certain averages in case the eigenvalue is not simple. The argument
relies on an extension and simplification of Osborn's recent results concerning
the approximation of eigenvalues of compact linear maps

P 1 O 0 iﬁ(

DD ) :2:”1) “73 EDITION OF | NOV 65 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Darta Entered)




